Sentinel Asia, the 9th Joint Project Team Meeting Training Workshop II: Demonstration of flood monitoring/forecasting systems

Flood monitoring and forecasting using GSMaP-IF

Kazumitsu MURAOKA

JICA Expert (Advisor on Water Management Policy and Technology, Bangladesh)

6th November 2024, Manila, Philippine

• What is GSMaP-IF?

• Example of utilize GSMaP-IF in Bangladesh.

• Example of flood monitoring using with GSMaP data.

What is the GSMaP?

- GSMaP stands for Global Satellite Mapping of Precipitation.
- GSMaP is a product of the Global Precipitation Measurement (GPM) mission, which provides global precipitation observations at three-hour intervals.
- Provides a global hourly rain rate with a 0.1 x 0.1 degree resolution.
- Values are estimated using multi-band passive microwave and infrared radiometers from the GPM Core Observatory satellite and with the assistance of a constellation of other satellites.

What is the GSMaP-IF ?

- Satellite Rainfall Correction Tool.
- To correct GSMaP original data by calibrating them with available observed groundbased rainfall data.
- GSMaP-IF was developed by UNESCO Pakistan project funded by JICA's ODA. Copyright of the GSMaP-IF model program is jointly owned by the UNESCO (United Nations Educational, Scientific and Cultural Organization) and JAXA (the Japan Aerospace Exploration Agency)
- Provides several correction methods. Users need to consider which method is suitable for their target basin.

GSMaP-IF version history

	Version	Date	Comment	Author(s)
	1.0	2012/05/29	First version	JAXA
	1.1	2012/07/26	[Updated] -Linear correction method -New correction method (Corparam) -Output JPEG image files	JAXA
	2.0	2014/6/30	[Added] -Real-time correction function	JAXA
	3.0	2016/12/28	[Updated] -Improved real time correction method -Support of IFAS format (ground rainfall data)	JAXA
	3.1	2017/3/31	[Updated] -Improved rainfall correction accuracy by a method of rainfall correction based on rain-cloud object based algorithm	JAXA
	3.2	2018/1/31	[Updated] -Improved Weight calculation method -Output ASCII files -Expanded calibration area limit	JAXA
SI		2018/8/24	[Final vesion] -Improved rainfall correction accuracy by a method of rainfall correction based on triangulation based algorithm	JAXA 2

The table is from the GSMaP Customization IF Real-time correction function User's Guide

Philippine Space Agency

What is "GSMaP-IF version 4.0"?

After GSMaP-IF version 2 focuses on the correction of short term (hourly/daily) rainfall. GSMaP-IF corrects GSMaP by using ground observatory rainfall data taken in synchronization with GSMaP. In Version 4.0, the corrections accuracy have been improved by using a TIN based algorithm. *Input ground observatory data*

The figure is from the GSMaP Customization IF Real-time correction function User's Guide

Process Flow of GSMaP real-time correction IF

The figure is from the GSMaP Customization IF Real-time correction function User's Guide

User's Work Flow of GSMaP real time correction IF

* Preparation is necessary for each processing for different date or place.

Example -- Bias correction of Satellite precipitation(GSMaP)

• What is GSMaP-IF?

• Example of utilize GSMaP-IF in Bangladesh.

• Example of flood monitoring using with GSMaP data.

[Case study 1] -- Ganges, Brahmaputra, Meghna river basins

Total catchment area of three basins : 1.72 million km2

Flood in Bangladesh

Haor region at North Eastern Bangladesh

Flood control by submergible embankment

Before harvesting in May: Protection of cropland by embankment

After May: Fishery work

Rui Beel Haor (2023 January)

2022 Monsoon flood in Haor area

Water Level at upstream of Haor region

Comparison with ground rainfall data

Annual Rainfall (Grand rain gage) 2004

Annual Rainfall (GSMaP)

Heavy rainfall outside observation network

GSMaP NRT 2022 June01-June30 (mm)

Space Agency

Daily rainfall (12 May 2022)

Space

120

100

80

60

40

20

n

Rainfall (mm)

"Data was provided by the Bangladesh / Northeastern India Meteorological Data Archive from the web site at http://rfweb.ed.kagawa-u.ac.jp/dav/gbm jp/data/DATABAS

Daily rainfall (15 May 2022)

Space

120

100

80

60

40

20

n

Rainfall (mm)

90.0 90.5 91.0 91.5 92.0 92.5 93.0 93.5 94.0 94.5

"Data was provided by the Bangladesh / Northeastern India Meteorological Data Archive from the web site at http://rfweb.ed.kagawa-u.ac.jp/dav/gbm_jp/data/DATABAS

Comparison to observed rainfall outside observation network

Space Agency Supported by Prof. Terao of Kagawa Univ. Japan

"Data was provided by the Bangladesh / Northeastern India Meteorological Data Archive from the web site at http://rfweb.ed.kagawau.ac.jp/dav/gbm_jp/data/DATABASE/"

Rainfall-Runoff-Inundation (RRI) Model

- Two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously
- The model deals with slopes and river channels separately
- At a grid cell in which a river channel is located, the model assumes that both slope and river are

positioned within the same grid cell

Sayama, T. et al.: Rainfall-Runoff-Inundation Analysis of Pakistan Flood 2010 at the Kabul River Basin, Hydrological Sciences Journal, 57(2), pp. 298-312, 2012.

Comparison with ground rainfall data

Flood inundation in the Meghna River basin - Assimulation of inundation in the Haor area (one year in 2007).

Inundation Area by MODIS satellite data.

Simulation result by RRI

Simulation result of Brahmaptra model (Discharge)

上進端に流量を入力

Conclusion

- Rainfall information outside of observation network is important for flood management at transboundary basin.
- GSMAP is very useful data for real-time flood forecasting or inundation assimulation.
- GSMAP-IF is effective in improving the accuracy of flood forecasts in areas where ground observation density is sparse.
- GSMaP-IF provides several correction methods. Users need to consider which method is suitable for their target basin.

Philippine Space Agency